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ABSTRACT
Website fingerprinting (WF) attacks allow an adversary to associate
a website with the encrypted traffic patterns produced when access-
ing it, thus threatening to destroy the client-server unlinkability
promised by anonymous communication networks. Explainable WF
is an open problem in which we need to improve our understanding
of (1) the machine learning models used to conduct WF attacks;
and (2) the WF datasets used as inputs to those models. This paper
focuses on explainable datasets; that is, we develop an alternative
to the standard practice of gathering low-quality WF datasets us-
ing synthetic browsers in large networks without controlling for
natural network variability. In particular, we demonstrate how net-
work simulation can be used to produce explainable WF datasets
by leveraging the simulator’s high degree of control over network
operation. Through a detailed investigation of the effect of network
variability on WF performance, we find that: (1) training and testing
WF attacks in networks with distinct levels of congestion increases
the false-positive rate by as much as 200%; (2) augmenting the WF
attacks by training them across several networks with varying de-
grees of congestion decreases the false-positive rate by as much as
83%; and (3) WF classifiers trained on completely simulated data can
achieve greater than 80% accuracy when applied to the real world.
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1 INTRODUCTION
Tor is an anonymous communication network [14] with an esti-
mated 8 million daily users [32]. Tor promises many privacy features
to its users, including protection against tracking and surveillance,
and resistance to browser fingerprinting and censorship [5]. Tor
is valuable as a privacy-enhancing technology because it enables
users to anonymously connect to internet destinations through its
novel application of onion routing [45].

Website fingerprinting (WF) attacks attempt to break Tor users’
anonymity by linking them to their online activities and thus may
be considered an existential threat to Tor. In a WF attack, an adver-
sary that can observe a Tor user’s connection entering into the Tor
network can first train machine learning (ML) models to recognize
the network traffic patterns associated with requests of a website,
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and then use the models to predict when the user accesses that web-
site. WF attacks work against encrypted traffic and generally only
require the series of packet directions (and sometimes timestamps)
that result from a website request in order to accurately predict the
website and deanonymize the user.

A major problem in the study of WF is that a lack of explainability
of WF prediction results leads to an incomplete understanding of the
severity of the threat facing the Tor network. A lack of explainability
is due to two related but distinct forms of uncertainty introduced in
the WF evaluation methodology. First, the application of black-box
ML models that are trained on the website prediction task yields de-
cisions that cannot be fully explained. Although some progress has
been made, e.g., by evaluating feature importance [17, 23, 40], model
explainability is still in general an open problem in ML [11]. Sec-
ond, WF studies have been conducted primarily using low-quality
datasets collected using automated browsers from the live Tor net-
work. Automated browsers have been criticized for being overly
synthetic and unrealistic across several axes [28, 38]. However, col-
lecting WF datasets from the live Tor network may be an even
greater contributor to uncertainty since researchers do not account
for their lack of control over the Tor network during data collection.
Tor is a large and diverse network with an extremely large number
of variables that are continuously changing in unknown ways; e.g.,
inaccurate load balancing [22], CPU bottlenecks [7], port exhaus-
tion [16], DoS attacks [26, 27], censorship events [4], natural relay
churn [2], and Tor version updates [3] can all lead to significant
performance effects and relay congestion, which has been shown
to alter traffic patterns and WF conclusions [40]. Thus, without a
controlled data collection process, WF evaluations will continue to
produce questionable results.

In this paper, we explore how network simulation can be used
to increase our control over the collection of WF datasets and thus
improve our ability to understand WF results. Our main insight is
that, thanks to recent advances in Tor network simulation method-
ology and architecture [24, 25], we can now design a controlled
WF evaluation methodology by running web clients and servers
directly inside of a deterministic Tor simulation in Shadow [21, 24].
This paper focuses on the study of the following research question:
How does Tor network composition and performance affect our ability
to train and test WF classifiers? To answer this question, we address
the following three subquestions.

RQ1: How can WF attacks be simulated in Shadow? We need
to be able to understand Shadow’s fidelity in order to properly
contextualize WF on simulated data. To measure fidelity, in § 3 we
investigate and quantify the extent to which Shadow can reproduce
the traffic characteristics associated with Tor Browser webpage
fetches. We measure and compare traffic in the live Tor network
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and in Shadow and find a high degree of similarity among common
WF features. In a multiclass closed-world experiment, we find that
a classifier trained entirely in Shadow can classify traffic collected
on the live Tor network with greater than 86% accuracy, and that a
classifier trained on the live Tor network can classify traffic collected
in Shadow with at least 88% accuracy. Overall, we find that Shadow
is a viable tool for evaluating WF attacks.

RQ2: How sensitive are WF classifiers to changing network com-
position and performance? The Tor network continuously changes
in composition and performance [1, 2]. Using WF data collected
from 18 Shadow simulations, in § 4 we investigate how changes
in network effects such as relay congestion influence the extent
to which an adversary can accurately classify webpage visits. We
find that the WF performance of classifiers that are trained on an
open-world binary classification task using data from networks
with low congestion and then transferred to networks with high
congestion significantly degrades: across four state-of-the-art WF
classifiers, three congestion levels, and three distinct networks, we
find that true- and false-positive rates may be misstated by as much
as 106% and 367%, respectively. We also find that training in net-
works with different relay compositions but with similar congestion
introduces error in the true- and false-positive rates by as much as
41% and 700%, respectively. Overall, our results indicate that WF
evaluations are significantly affected by relay congestion and will
be more informative when controlling for congestion.

RQ3: How can WF classifiers be made more robust to changing net-
work composition and performance? We seek to better understand
how classifiers might be made more robust to changing congestion
levels so that we can (1) develop better defenses against such ro-
bust classifiers, and (2) improve our WF threat estimates to better
prioritize future work. To this end, in § 5 we investigate the extent
to which WF classifiers can be augmented using data gathered
from simulations of networks with varying degrees of congestion.
Across our tested classifiers and network variations, we find that
classifiers trained on an open-world binary classification task are
more robust to congestion and can improve true- and false-positive
rates by as much as 19% and 83%, respectively. Additionally, we find
that we can classify real-world Tor traffic with greater than 80%
accuracy using classifiers that are exclusively trained using network
simulation. Overall, our results indicate that network simulation is
a viable strategy for improving WF classifier generalizability.

We argue that novel advancements in methods to increase the
quality of WF datasets (i.e., model inputs) will lead to meaningful
improvements in our ability to explain WF results. We demonstrate
in this paper that network simulation is a viable strategy for improv-
ing our scientific understanding of the causal relationships between
network changes and WF performance, and that this can be done
in a simulation environment that is completely private, safe, and
controlled. We also believe that genuine WF datasets [13] will ulti-
mately improve estimates of the severity of WF as a threat against
the live Tor network, and hope that future work will consider safely
gathering such data.

Contributions. We summarize the primary novel contributions
of our work as follows:
– We demonstrate Shadow’s fidelity in simulating WF attacks and

find similar classifier performance when training and testing in
both live and simulated Tor networks.

– We establish the first methodology for running end-to-end WF
evaluations using data collected during network simulation.

– We confirm and greatly extend results from prior work [40]
finding that relay congestion can have a strong negative effect
on classifier performance.

– We are the first to discover that WF classifiers exclusively trained
on simulated data can be made more robust to variations in net-
work composition and relay congestion, and can be transferred
to the real world with high accuracy.

2 BACKGROUND
2.1 Tor
Tor Browser, a hardened fork of Firefox, is a popular tool for ac-
cessing websites through the Tor network. Embedded inside of
Tor Browser is the Tor client software that (1) exposes a SOCKS
proxy to enable communication with the browser, and (2) forwards
browser requests for resources through the Tor network to external
internet services that need not be aware of Tor. The Tor client for-
wards the browser requests and other data from peer connections,
generally called streams, through long-lived cryptographic tunnels
called circuits that each contains a series of three Tor relays: an
entry, a middle, and an exit. A circuit is created such that the entry
may observe the client but not the destination, and the exit may
observe the destination but not the client; thus, Tor clients are said
to be unlinkable (i.e., anonymous) to the destinations they visit.

An application may create a number of streams through Tor that
connect to various internet destinations, and the Tor client software
must decide how to multiplex these streams over circuits. Isolating
each stream to its own circuit would cause significant cryptographic
overhead, enable malicious servers to cause a client to build many
circuits, and increase a client’s exposure to compromised relays.
Thus, Tor prefers to group and multiplex related streams over the
same circuit. The stream isolation strategy used in Tor Browser is to
group all first and third party streams with respect to the first-party
domain that appears in the URL bar, and isolate groups of streams
with distinct first-party URL bar domains to separate circuits.

To hinder traffic analysis, all data sent through Tor is packaged
into cells which are padded to a fixed size of 514 bytes and encrypted
once for each circuit relay. The padded cells limit information leak-
age by adding some protection to the amount of application data
being forwarded. However, the number of cells and their direction-
ality and timing can still be observed by each relay in the circuit,
enabling website fingerprinting attacks against Tor users.

2.2 Website Fingerprinting
In a website fingerprinting (WF) attack, an adversary that can ob-
serve communication between a Tor client and its entry relay can
use traffic metadata to predict the website visited by the client. In
this paper, we consider an adversary that runs an entry relay and
therefore has access to circuit and cell metadata, i.e., the timing and
directionality of cells sent through a circuit. However, note that
prior work has demonstrated that WF is still effective for adver-
saries that do not have access to Tor metadata [48].

We assume that the adversary can collect metadata about the
circuits and cells it observes. We define a cell as the pair (𝑡𝑖 , 𝑑𝑖 )
where 𝑖 is the cell’s position in the ordered sequence of cells that
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have been forwarded through a circuit since it was created, 𝑡𝑖 is the
time that the 𝑖th cell was observed relative to circuit creation, and
𝑑𝑖 ∈ {−1, 1} is the direction in which the 𝑖th cell was forwarded
(−1 indicates the cell was sent by the client, 1 indicates it was
received by the client). We define a cell trace 𝐶 as ⟨(𝑡𝑖 , 𝑑𝑖 ) or ∅⟩𝑁𝑖=1,
i.e., a fixed-length vector of 𝑁 components where 𝐶 [𝑖] = (𝑡𝑖 , 𝑑𝑖 )
if cell 𝑖 was observed and 𝐶 [𝑖] = ∅ if the data stream was shorter
than 𝑖 cells. We use 𝑁=5,000 for consistency with prior work.

We assume that the adversary defines a finite set of webpages
that are considered sensitive, and that it wants to detect when
and which sensitive webpages are visited (e.g., for the purpose of
censorship, targeted surveillance, or tracking). To accomplish this
goal the adversary will train machine learning classifiers, which will
require a training set of labeled cell traces. We define the following
sets of labels, e.g., webpage URLs:
𝑊𝛼 : webpages that the adversary labels as sensitive
𝑊𝛽 : webpages that the adversary labels as benign
𝑊∅ : unlabeled webpages (they are ∈ world, but ∉𝑊𝛼 and ∉𝑊𝛽 )

The adversary will train machine learning classifiers on two tasks.
First, it will train a classifier in the binary classification setting to
predict when a given cell trace is either sensitive (in 𝑊𝛼 ) or not.
Second, for cell traces that are predicted as sensitive, it will train a
classifier in the multiclass classification setting to predict the label
𝑤 ∈𝑊𝛼 corresponding to the cell trace. Training these classifiers
requires that the adversary collects labeled training data, e.g., by
visiting the webpages in𝑊𝛼 and in𝑊𝛽 using Tor Browser and its
own entry relay, recording the cell traces for each webpage visit,
and labeling each cell trace with the visited URL. Once trained,
the adversary can test the classifiers against unlabeled cell traces
observed when users visit webpages using its relay. We highlight
that webpages 𝑤 ∈𝑊∅ are not considered by the adversary during
training, but may be presented during testing; we consider the effect
of such pages in our evaluations in § 4 and § 5.

2.3 Machine Learning Classifiers
2.3.1 Supervised Learning. Given a dataset 𝐷 = {(𝑋𝑖 , 𝑦𝑖 )}𝑛𝑖=1 of
examples 𝑋𝑖 ∈ R𝑀 and corresponding labels 𝑦𝑖 ∈ Z+, the goal of
supervised learning is to learn the parameters \ of a parameterized
classifier 𝑓\ (𝑋 ) = 𝑦 that minimizes loss over the training set:

min
\

∑︁
𝑖

𝐿(𝑦𝑖 , 𝑓\ (𝑋𝑖 )),

where 𝐿 is a loss function that penalizes misclassification.
The learned classifier can then be used to predict the label of

a new example 𝑋 ′ for which the label is not necessarily known.
To assess the degree to which 𝑓\ generalizes to new examples, the
training dataset is partitioned into two disjoint subsets: 𝐷Train =
{(𝑋𝑖 , 𝑦𝑖 )} 𝑗𝑖=1 and 𝐷Test = {(𝑋𝑖 , 𝑦𝑖 )}𝑛𝑖=𝑗+1. Then, the model param-
eters are learned using only 𝐷Train. Generalization error is then
determined by applying the classifier to examples in 𝐷Test and
comparing the known label to the predicted label.

2.3.2 Performance Metrics. Depending on the experiment, differ-
ent measurements are used to assess the quality of the learned
classifier (i.e., the severity of the adversary’s attack). In a balanced
setting, where each label is represented in the dataset 𝐷 roughly

an equal number of times, accuracy (Acc) can be used:

Acc =
I(𝑦𝑖 , 𝑦𝑖 )
|𝐷Test |

where 𝑦𝑖 = 𝑓\ (𝑋𝑖 ) is the predicted label for (𝑋𝑖 , 𝑦𝑖 ) ∈ 𝐷Test and I
is an indicator function that outputs 1 if its arguments are equal
and 0 otherwise. Accuracy represents the fraction of predictions
that were made correctly by the classifier.

Accuracy is not appropriate for use in an imbalanced setting,
when the distribution of labels in the test set is not uniform (in this
setting, high accuracy can be achieved by a trivial and useless clas-
sifier that always predicts the most frequently occurring label). In
the imbalanced setting, true-positive rate and false-positive rate are
more appropriate measures of classifier performance. These rates
are defined over the total number of the four possible classification
outcomes (assuming binary classification):

Outcome Notation True Label 𝑦 Predicted Label 𝑦
True positive TP 1 1
True negative TN 0 0
False positive FP 0 1
False negative FN 1 0

The metrics are then defined as follows:
True positive rate (Recall or TPR): Defined as TP/(TP + FN). Recall indi-

cates the rate at which monitored examples are correctly
detected by the adversary.

False positive rate (FPR): Defined as FP/(FP + TN). FPR is the rate at
which benign examples are falsely flagged as belonging to
the monitored set.

Some classifiers output confidence scores associated with the
label, i.e., 𝑓\ (𝑋𝑖 ) ↦→ (𝑦𝑖 , 𝑐𝑖 ) for a confidence value 𝑐𝑖 ∈ [0, 1]. Clas-
sifiers with this property may be tuned according to confidence. For
example, any classification made with too-low confidence could
be “discarded” and assigned a default label (e.g., 0) regardless of
the predicted label. Different confidence thresholds yield different
true and false positive rates; the set of all possible true and false
positive rates for a classifier are what defines its receiver operating
characteristic (ROC) curve. In this work, when applicable, we just
use the standard decision threshold of 0.51 and do not consider
metrics exploring the trade off between TPR and FPR, such as the
area under the ROC curve. Using TPR and FPR—as opposed to us-
ing ROC curves—allows us to consistently compare all predictive
models, not just those that output confidence values.

2.3.3 Classical and Deep Learning. We will consider both classical
machine learning models and more recent deep learning models.

Classical machine learning models, such as decision trees or
support vector machines, have low complexity in comparison to
their deep learning counterparts. Feature selection is a characteristic
requirement of classical machine learning. Feature selection is the
process of taking a cell trace 𝐶 and producing a corresponding fea-
ture vector 𝑋 ∈ R𝑀 for input to the classifier. Each feature should
encode some information about the relationship of labels and cell
traces. For example, the components of 𝑋 could incorporate sum-
mary statistics about𝐶 such as the average rate of cell transmission

1In the multi-class setting, the label with maximal confidence is used instead.
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or the total number of cells sent between the communicating par-
ties. Determining an informative set of features requires expert
domain knowledge and is error-prone—it is difficult for experts to
precisely define all of the features that are useful for prediction.
Moreover, for classical models to work well, the number of features
used must be kept limited [8].

In contrast, deep learning models, such as convolutional neural
networks, are highly complex and often contain millions of param-
eters. A benefit of deep models is that they do not require feature
selection but instead take as input “raw” features, such as the vec-
tor of packet directions ⟨𝑑𝑖 ⟩𝑀𝑖=1. During training, neural networks
automatically learn a set of features important for classification in
the hidden layers of the model.

In addition to the advantage of automatic feature selection, deep
learning models tend to outperform partially due to their higher
capacity to encode complex relationships between examples and
labels. Classical methods are not totally obviated, however. Classical
methods require less data to train, are more interpretable, and can
produce a prediction using fewer steps of computation.

2.4 Collecting Cell Traces
In order to evaluate the effectiveness of WF attacks, we require
a method for collecting and labeling cell traces. We follow the
approach outlined above in § 2.2 in which an entry relay records
cell metadata from circuits it observes. Collecting entry metadata
requires modifications to the Tor software, but enables us to use an
identical collection process in the live Tor network and in Shadow.

Our Tor metadata collection process follows the design estab-
lished by Cherubin et al. [13]. When our client creates a circuit
through our entry relay, the client sends a new, custom cell type to
the entry to indicate that the circuit is ours and to communicate
the webpage label that is being accessed though the circuit. The
entry relay then marks the circuit for measurement, records the
label, and begins recording a cell trace for the circuit by appending
cell metadata items to a list whenever a cell is forwarded in either
direction (cell traces are defined in § 2.2). The relay stops recording
the cell trace when either it has observed 𝑁 cells (recall, we use
𝑁=5,000) or the circuit is closed, whichever occurs first. The relay
then exports the labeled cell trace in an asynchronous event emitted
through Tor’s control interface. Cell traces can be collected using
stem or any other control client that registers for the events.

2.5 Shadow
Shadow is a discrete-event network simulator and the state-of-
the-art tool for running large-scale Tor network simulations [21].
Shadow’s core architecture was recently redesigned, and as of
v2.0.0 it now directly executes unmodified applications as indi-
vidual Linux OS processes and co-opts them into the simulation
environment using system call interposition and efficient shared-
memory data transfer mechanisms [24]. As a result of the new archi-
tecture, Shadow is able to directly execute unmodified applications
without rebuilding them and benefits from improved compatibility,
correctness, and maintainability. The applications are connected
through a simulated network stack that includes implementations
of communication protocols such as TCP and UDP as well as other
networking, event notification, and file descriptor facilities that

Linux normally provides through its system call interface. We use
Shadow in this paper to run large-scale Tor network simulations
following recent improvements in Tor network experiment design
and analysis [25]. We primarily use existing tools to set up and run
our Tor experiments and we make only slight modifications for the
purpose of generating and gathering WF data to use for subsequent
training and testing of machine learning classifiers.

3 FIDELITY
In this section, we investigate RQ1: How can WF attacks be simu-
lated in Shadow? We seek to answer this question by quantifying
the extent to which Shadow can reproduce the traffic character-
istics associated with Tor Browser webpage fetches. Quantifying
Shadow’s fidelity will enable us to contextualize the WF evalu-
ation and analysis presented throughout the paper. We describe
our measurement methodology and the data we generated before
quantifying Shadow’s fidelity in terms of traffic features, simulated
network performance, and a closed-world WF analysis.

3.1 Methodology
Our ultimate goal is to quantify the fidelity of simulating Tor net-
work webpage fetches in Shadow. Below we describe the set of
webpages that we fetch, the web server and client software we use,
and the measurement tasks we perform.

3.1.1 Web Server. We choose an identical set of webpages that
we will serve for measurement in both the live Tor network and
in a Shadow-simulated Tor network to guarantee webpage and
server consistency across measurements. We use the zimply python
module to mirror the “all maxi” version of the English Wikipedia
from 2023-01.2 The mirror contains a total of 23,264,812 pages that
zimply makes available for download through an HTTP server. We
form a subset𝑊𝛼 of all pages available in this mirror by conducting
10 random walks that each starts at the top-level index page of the
mirror. For each walk, we add a random subpage from the index
page into 𝑊𝛼 and then fetch the subpage. We choose a random
page linked on the subpage, add it to𝑊𝛼 and fetch it, and repeat
recursively until we reach a recursion depth of 10. After 10 random
walks, our set𝑊𝛼 contains 98 unique pages that we deem as “sen-
sitive” for the adversary (see § 2.2) and use for measurement and
evaluation throughout the paper.

3.1.2 Web Client. Using Tor Browser to fetch the pages in𝑊𝛼 in
both the live Tor network and in a Shadow-simulated Tor network
would lead to the most direct comparison between the real and sim-
ulated networks. When fetching webpages in the live Tor network,
we use tor-browser-selenium (TBS) as a surrogate for Tor Browser.
TBS has become the standard tool for collecting data for website
fingerprinting studies; it is a python wrapper around the selenium
module and is used to automatically configure and drive the in-
stance of Firefox that is embedded inside of Tor Browser. Thus, we
assume that Tor Browser and TBS produce identical results when
identically configured.

Unfortunately, our attempts to run major web browsers in Shadow
(including Firefox and Chromium) failed due to missing system calls
(e.g., fork() and exec() were not yet supported by Shadow at the
2Available at https://dumps.wikimedia.org/other/kiwix/zim/wikipedia/

562

https://dumps.wikimedia.org/other/kiwix/zim/wikipedia/


Data-Explainable Website Fingerprinting with Network Simulation Proceedings on Privacy Enhancing Technologies 2023(4)

time of writing). Moreover, web browsers are resource-intensive
tools and a lighter-weight solution is desirable since we intend to
run large-scale Shadow-simulated Tor networks with thousands
of clients and relays. Thus, our methodology considers the use of
wget2 as a surrogate for Tor Browser when simulating webpage
fetches in Shadow.3

3.1.3 Measurement Tasks. We design three measurement tasks
to help us quantify the fidelity of running wget2 in a Shadow-
simulated Tor network as a surrogate for running Tor Browser
(i.e., TBS) in the live Tor network:
Task 1: fetch𝑊𝛼 with TBS in the live Tor network;
Task 2: fetch𝑊𝛼 with wget2 in the live Tor network; and
Task 3: fetch𝑊𝛼 with wget2 in a Shadow-simulated Tor network.
We identically configure the zimply Wikipedia mirror from § 3.1.1
in all tasks for consistency across measurements.

Task 1: TBS→ live Tor network. During this measurement, we
make two major sets of configuration changes to the default con-
figuration that is set by TBS. First, we configure all of the Firefox
preferences that Tor Browser normally sets in order to run at the
“Safest” Security Level; this includes disabling JavaScript, some
fonts, and HTML5 media. Although recent work has found that
changes in the security level do not meaningfully reduce attack
performance [33], we found that the “Safest” level does improve
browser consistency across repeated fetches of the same page. Sec-
ond, we configure Firefox to disable several preferences associated
with HTTPS-first and HTTPS-only. Because zimply serves the
Wikipedia pages over HTTP, the HTTPS options result in errors
and timeouts that extend the overall measurement time.

We run TBS and the zimply Wikipedia mirror on a dedicated
machine in Chameleon Cloud, an experimental platform offering
access to bare-metal machines for computer science systems re-
search [29]. TBS is configured to send its requests through a locally
running Tor client process, out through the Tor network, and then
back to a locally running zimply Wikipedia mirror. The Tor client
is configured to isolate each webpage fetch from our server to a
new circuit and to pin a Tor relay under our control (running on
a dedicated machine in New York, USA) as the entry relay for all
circuits it builds. Our pinned entry relay collects cell traces from
our client’s circuits following the approach described in § 2.4.

Task 2: wget2→ live Tor network. During this measurement, we
follow the same methodology as in Task 1 except that we use wget2
instead of TBS to fetch the pages in 𝑊𝛼 . wget2 includes support
for fetching webpages through an HTTP proxy, but not through a
SOCKS proxy such as Tor. Thus, we slightly extend wget2 to add
SOCKS client support, and use the modified version to fetch the
pages in𝑊𝛼 through our Tor client and relay. We configure wget2
to fetch all embedded objects on each page (--page-requisites)
concurrently (--max-threads=30) and to set the same user agent
that is set by TBS. Finally, we configure wget2 to filter out some re-
source URLs (--reject-regex=/w/|\.js$), and verified through
local testing that our TBS and wget2 configurations download an
identical set of resources from the zimply server.4

3wget2 offers significant improvements over wget, most notably including the simul-
taneous download of multiple resources using multi-threading.
4Each tool issues one unique request not issued by the other—TBS for favicon.ico
and wget2 for robots.txt—each of which results in an HTTP 404 error from zimply.

Task 3: wget2 → Shadow-simulated Tor network. The goal in
this task is to mirror the measurement process from Task 2 inside
of Shadow. To do this, we first use recently published modeling
tools (i.e., tornettools) [25] to produce a private Tor network
configuration suitable for Shadow using Tor metrics data from
2023-01. We generate a Shadow configuration that represents the
live Tor network at a scale of 25%;5 it contains 1,536 relays and
2,169 traffic generation processes that create 746,757 circuits every
10 minutes and emulate the simultaneous traffic load of 188,085
users. We extend the generated configuration to add hosts running
the zimply Wikipedia mirror and the wget2 processes (one for each
webpage fetch). As in Tasks 1 and 2 above, our relay (now running
in Shadow) is pinned as the entry relay for the Tor client used by
wget2, and the pinned entry collects cell traces as described in §2.4.

3.1.4 Datasets. We use an identical process and format for collect-
ing and storing cell traces from our Tor entry relay, and consistently
process the data collected during our three measurement tasks. Dur-
ing each measurement task, we fetch each of the 98 unique pages in
𝑊𝛼 200 times. However, we observe slightly more than 200 circuits
per page for some pages in𝑊𝛼 , which we believe may be due to
errors and retries in TBS, wget2, or Tor. Thus, we apply the random
sample consensus (RANSAC) method [15], a standard outlier detec-
tion technique, with a simple 𝑘-Nearest Neighbors model to find
and eliminate outliers. Each trace is preprocessed into a number
of features for input to the 𝑘-nearest neighbors model: we use the
first five features defined in § 3.2 along with the maximum number
of cells of a burst in the trace, and the CUMUL representation of
the trace at the 25th, 50th, 75th, and 100th indicies [36]. Each of
these features has been shown in prior work to be informative
characteristcs of traces [17, 36, 47]. The learned model is used to
prune the data from each measurement task such that no more than
200 cell traces are available for each page in𝑊𝛼 . We also remove
all cells that the entry relay identifies as Tor control cells, since
those do not carry web payloads. We define the resulting, cleaned
datasets of cell traces as:
𝐷 (tbs, tor): 200 cell traces ∀𝑤 ∈𝑊𝛼 from Task 1
𝐷 (wget2, tor): 200 cell traces ∀𝑤 ∈𝑊𝛼 from Task 2
𝐷 (wget2, shadow): 200 cell traces ∀𝑤 ∈𝑊𝛼 from Task 3
where 𝐷 (·) [𝑖, 𝑗] is the cell trace from the 𝑗th fetch of the 𝑖th page.

3.1.5 Ethics. The measurements described in this section involve
use of the live, public Tor network. We took several steps to limit
the impact of our measurements on the network and its users. We
limit our measurement to the small set 𝑊𝛼 of 98 pages and we
use our own Tor clients to create measurement circuits and fetch
these pages: in total, we create approximately 40k circuits to fetch
40k pages. The load we add to the network is low relative to the
billions of circuits Tor is estimated to handle every day [32] and
the 300 Gbit of traffic handled every second [1]. Still, we spread
our measurement load over the course of several days to limit the
amount of overhead we add to the network at any one time, and
we use our own entry relay for all circuits we create. Our relay
only collects cell traces from circuits created by clients under our
control, which is enforced by the use of unique Tor control cells

5We used the tornettools setting --load_scale=2 to create a configuration whose
Shadow-simulated performance is representative of Tor during 2023-01 (see §3.3.1).
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Figure 1: The cumulative distribution of the per-page me-
dian feature values, as defined in Eqn. 1, for the six feature
functions shown in the subplots. The feature values from
wget2 closely align with those from TBS.

sent between our client and relay. Finally, although the method of
fetching webpages over Tor has been peer-reviewed many times,
a high-level goal in this work is to establish a new method for
evaluating WF using Shadow simulations that are safe, private, and
add absolutely no additional overhead or risk to Tor or its users.

3.2 Browser Fidelity
In this section we evaluate the fidelity of wget2 as a surrogate for
TBS; that is, we evaluate the differences between the cell traces in
𝐷 (tbs, tor) and those in𝐷 (wget2, tor). We quantify the differences
using a basic set of features that are commonly used in WF literature,
i.e., functions 𝑓 (𝐶) ↦→ 𝑣 that each takes as input a cell trace 𝐶 and
returns as output a single value 𝑣 :
Total Cell Count: the total number of cells in a trace.
Cells Sent: the number of cells sent by the client.
Cells Received: the number of cells received by the client.
Burst Count: the number of cell bursts in either direction.
Mean Burst Length: the mean number of cells in a burst.
Time to Last Byte (TTLB): the elapsed time between the client send-

ing the first cell and receiving the last cell.
A cell burst is a cell trace subsequence in which all consecutive
cells have the same direction (i.e., all are sent or received); a burst
ends when a cell is observed with a direction that is opposite of the
direction of the previous cell.

We analyze the cell traces in 𝐷 (tbs, tor) and in 𝐷 (wget2, tor).
We compute the feature functions described above for each cell
trace in each dataset, and collapse the 200 feature values into a
single value for each page 𝑖 by computing the median:

𝐹 𝑖(tool,tor) ← Median (∀𝑗 : 𝑓 (𝐷 (tool, tor) [𝑖, 𝑗])) (1)

where 𝑓 is a feature function and 𝑡𝑜𝑜𝑙 is either 𝑡𝑏𝑠 or 𝑤𝑔𝑒𝑡2. We
plot in Fig. 1 the cumulative distributions CDF

(
∀𝑖 : 𝐹 𝑖(tbs,tor)

)
and

CDF
(
∀𝑖 : 𝐹 𝑖(wget2,tor)

)
for each feature (each CDF is calculated over

98 median values). The subplots show remarkable similarity in
the distributions of the feature medians when comparing TBS to
wget2. The largest discrepancy is due to the Cells Sent and TTLB

features: wget2 tends to send more cells than TBS with higher
variance in download times, the latter of which may be an expected
consequence of variable circuit performance.

We further analyze the features on a per-page basis to supple-
ment the distribution analysis. We compute the absolute difference
between the per-page medians for each feature:

𝐹 𝑖diff ← 𝐹 𝑖(tbs,tor) − 𝐹 𝑖(wget2,tor) (2)

We analyze CDF(∀𝑖 : 𝐹 𝑖diff ) for all features and observe that wget2
sends between roughly 1 and 50 more cells than TBS over the entire
life of the circuit, and that TTLB no longer stands out as particularly
inaccurate. (See Fig. 6 in Appendix A for more details.)

Finally, we compute 99% confidence intervals for each of the
98 pages over all 6 features (by replacing median in Eqn. 1 with
mean and standard deviation). We find that the TBS and wget2 CIs
overlap in 233/588=40% of cases, indicating that fetching the same
page with the same tool multiple times may sometimes produce
as much variability as fetching the page with the other tool. (See
Fig. 7 in Appendix A for more details.)

Key Takeaway. We conclude from our analysis that the fidelity
of wget2 as a surrogate for TBS is acceptable with respect to the
cell traces used for WF analyses and for the purpose of enabling
controlled WF evaluations using network simulation.

3.3 Simulation Fidelity
In this section, we quantify the fidelity of Shadow in simulating
wget2 fetches through a Tor network. We first conduct a per-
formance analysis to characterize the network performance of
our Shadow-simulated Tor network relative to the live Tor net-
work, and we then conduct a website fingerprinting analysis using
𝐷 (wget2, tor) and 𝐷 (wget2, shadow).
3.3.1 Network Performance. We run Shadow simulations using the
configuration described in Task 3 in § 3.1.3. We run six repeated
trials using Shadow v2.4.0, Tor v0.4.7.10, and tornettools at
commit 75e59fa; we use unique Shadow seeds for each simula-
tion following the state-of-the-art Tor experimentation method-
ology [25]. We run the simulations using a blade server cluster
in which each blade contains identical hardware: 1 TiB of RAM
and 2×18 core Intel Xeon Gold 6354 CPUs (36 total cores and 72
total hyperthreads). Each blade is configured to run a minimal ver-
sion of Debian 11 with Linux kernel v5.10.0, and the simulations
are run in containers using Singularity [30]. In each simulation,
wget2 is used to repeatedly fetch webpages through the Shadow-
simulated Tor network for 25 simulated minutes to collect data for
𝐷 (wget2, shadow), mirroring the process that was used to collect
𝐷 (wget2, tor) on the live Tor network. In addition, several perfor-
mance metrics are collected and parsed by tornettools and are
available for analysis.

Across the six trials we find that the maximum RAM used by
Shadow was 685 GiB, which includes the memory used by the
tor, wget2, and traffic generator processes running during the
simulation (recall that we simulate the Tor network at a scale of
25%). We find that each of the six trials completed in fewer than 28
hours. The performance characteristics of the simulated network
across a variety of client performance metrics are shown in Fig. 2.
Because tornettools measures the same metrics as those that are
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Figure 2: Client performance in the live Tor network in 2023-
01 compared to our Shadow-simulated Tor network. The
shaded regions show 95% CIs computed over 6 trials [25].

gathered in the live Tor network [1], we are able to directly compare
the Shadow-simulated performance to the live Tor performance.
Overall, we find that the long-tail performance in Tor is worse
than in Shadow, perhaps because Shadow does not reproduce all
possible network failures. However, the expected performance is
much more accurate than the long-tail performance: for example,
the median circuit build time is 2.33 seconds in both Shadow and
Tor, the median circuit goodput is 9.84 Mbit/s in Shadow and 10.8
Mbit/s in Tor, and the median TTLB for 1 MiB downloads is 8.32
seconds in Shadow and 11.6 seconds in Tor.

Key Takeaway. Based on our performance analysis and our out-
lier detection and removal process from § 3.1.4, we expect minor
impact due to fidelity on the cell traces collected under simulation.

3.3.2 Website Fingerprinting. With this next analysis, we aim to
establish that cell traces generated using wget2 with Shadow ac-
curately represent cell traces generated using wget2 with the live
Tor network in a WF attack evaluation. Ideally, traces generated
using Shadow should be indistinguishable from traces collected on
the live Tor network, but in practice Shadow simulations do not
completely capture the intricate complexity of the live network.
Hence, we assess trace similarity using the ultimate task of WF
classification. We set up four experiments:
– Same dataset for training and testing:

(1) Train and test classifiers using traces from 𝐷 (wget2, tor).
(2) Train and test classifiers using traces from𝐷 (wget2, shadow).

– Cross datasets for training and testing:
(3) Train classifiers using traces from 𝐷 (wget2, tor) and test

using traces from 𝐷 (wget2, shadow).
(4) Train classifiers using traces from 𝐷 (wget2, shadow) and

test using traces from 𝐷 (wget2, tor).
If the Shadow cell traces are representative of the live network
traces, two properties should hold. First, classification performance
in the same-dataset experiments should be similar—it would sig-
nal modeling inconsistencies if WF attacks succeeded on the live
network or in Shadow but did not succeed in the opposite set-
ting. Second, classification performance in the cross dataset ex-
periments should not be extraordinarily degraded with respect to
the same dataset experiments. If examples from 𝐷 (wget2, shadow)

Table 1: Multiclass closed world classification accuracy for
wget2 cell traces collected from the live Tor network and
from our Shadow-simulated Tor network.

Train→ 𝐷 (wget2, tor) 𝐷 (wget2, shadow)
Test ↓ CUMUL 𝑘-FP DF TT CUMUL 𝑘-FP DF TT

𝐷 (wget2, tor) 0.97 0.97 0.97 0.97 0.86 0.83 0.76 0.61
𝐷 (wget2, shadow) 0.93 0.88 0.95 0.92 1.0 1.0 1.0 0.99

and𝐷 (wget2, tor) are similarly distributed, then a classifier trained
on one dataset should accurately label examples from the other.

We carry out this experiment with four WF classifiers, represent-
ing both classical and deep learning approaches: (1) CUMUL [36],
(2) 𝑘-Fingerprinting (𝑘-FP) [17], (3) Deep Fingerprinting (DF) [42],
and (4) Tik-Tok (TT) [40]. (Complete details regarding these classi-
fiers are given in § 4.3.) CUMUL uses a support vector machine and
𝑘-Fingerprinting uses a random forest classifier to perform classi-
fication. Both attacks are implemented using high-level statistics
as the features of each cell trace, including those described in § 3.2.
Deep fingerprinting and Tik-Tok are implemented using a deep
neural network that takes cell traces as input; the DF attack uses
cell direction, whereas the TT attack uses cell directions and times.

The classifiers are evaluated using a typical multiclass closed
world classification experiment. The classification task is to predict
which page a trace belongs to of the 98 pages constituting𝑊𝛼 (recall
from §3.1.4 that 𝐷 (wget2, tor) and 𝐷 (wget2, shadow) contain 200
cell traces for each of the 98 pages). We randomly partition each
dataset into a 60% training set and 40% testing set. The train-test
split is stratified by webpage so that 160 traces from each webpage
appear in the training set and 80 traces from each webpage ap-
pear in the test set. Then, each classifier is trained on either the
𝐷 (wget2, tor) or 𝐷 (wget2, shadow) training sets and tested on
both test sets. Because each class appears equally frequently in the
test set, we use accuracy to measure classification performance.

The results of this experiment are shown in Table 1. The reported
accuracy values are between 0 and 1, where maximal accuracy indi-
cates perfect webpage prediction. A classifier that outputs random
guesses achieves an accuracy of 1/98 ≈ 0.01 in expectation. When
the same dataset is used for training and testing, all classifiers
achieve near-perfect accuracy, and hence we have consistency as
was desired. The cross-dataset experiment results also conform to
the desired outcome: classification performance is relatively high,
even when the classifier is tested on a different source of data than
that on which it was trained. The strength of this result is worthy
of emphasis: we find that a classifier trained entirely in simulation
can classify traces collected on the live Tor network with greater
than 85% accuracy (CUMUL). Note that we do find that training
on live network data and testing on Shadow data produces higher
accuracy than the converse case. We suspect this effect is due to
higher intra-page trace variance produced on the live Tor network,
whereas Shadow simulations do not perfectly reproduce all sources
of variance (see Fig. 2).

Key Takeaway. Our findings show that Shadow can be used to
produce Tor cell traces that are well within the distribution of traces
that are produced on the live Tor network. We conclude that it is
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Figure 3: Relay churn over all 744 consensuses from 2023-01.
𝑅0 is the set of relays present in the first consensus on 2023-
01-01, and 𝑅𝑥 is the set of relays in subsequent consensuses.
The Jaccard index, a measure of set similarity, is defined as
|𝑅0 ∩ 𝑅𝑥 | / |𝑅0 ∪ 𝑅𝑥 | and plotted against the right y-axis.

viable to implement and evaluate WF attacks using data collected
from Shadow simulations.

4 SENSITIVITY
In this section, we investigate RQ2: How sensitive are WF classifiers
to changing network composition and performance? We seek to an-
swer this question by studying WF in a variety of unique network
environments to better understand how network effects such as
relay congestion influence the extent to which an adversary can
accurately classify webpage visits. We describe (1) the methodology
we used to collect cell traces across various network conditions in
Shadow, (2) an analysis of the cell traces, and (3) an evaluation of
both closed and open world WF attacks.

4.1 Methodology
Our ultimate goal is to evaluate the extent to which WF classifiers
that are trained using data collected under certain network condi-
tions can be transferred and applied under differing conditions. To
accomplish our goal, we use Shadow to generate several Tor net-
works with distinct properties, collect cell traces in each network,
and use the collected data in WF evaluations.

4.1.1 Tor Network Configurations. We again use tornettools to
generate Tor network configurations that are suitable for running in
Shadow [25]. Due to resource limitations, and to remain consistent
with § 3, we generate all networks at a scale of 25% of the live Tor
network using Tor metrics data from 2023-01. When generating
the network configurations, we vary the network conditions in two
ways: (1) we re-randomize the selection of relays to use in each
network; and (2) we increase and decrease the traffic load generated
in each network to adjust relay congestion.

Re-randomizing Relay Selection. tornettools offers the ability
to deterministically generate network configurations, or to change
the random seed in order to re-randomize the selection of relays
that will appear in the simulated Tor network. Although the live
Tor network consisted of between 6,000 and 6,500 relays during the
month of January, 2023 [1], Fig. 3 shows that there is considerable
relay churn during this period: (1) ∼2,000 new relays joined during

the month (blue dashed line), ∼1,000 of which were still present at
the end of the month (orange dotted line); (2) ∼3,000 relays left at
some point during the month (red dashed line), ∼1,000 of which did
not come back (green dotted line); and (3) the Jaccard index was
0.75 at the end of the month, indicating a 25% turnover in relays.
When building networks, tornettools will consider all relays that
were present sometime during 2023-01. Thus, we run tornettools
with three unique seeds in order to generate three independent
networks with a distinct set of relays selected to participate in each.
This relay variation represents the natural fluctuation of the live
network during a typical month.

Adjusting Relay Congestion. tornettools offers a network gen-
eration option (--load_scale) to allow us to increase or decrease
the circuit and stream creation rate of the background traffic gen-
erators, which in turn will generally increase or decrease relay
congestion. For each of the three random seeds, we generate a
network with each of the following three load profiles:
Base Load: baseline load from § 3.3.1 (--load_scale=2)
Low Load: 25% less load than baseline (--load_scale=1.5)
High Load: 25% more load than baseline (--load_scale=2.5)
The generation process produces a total of nine distinct network
configuration files that can be run in Shadow; to each of these nine
configurations we add web clients and servers in order to collect
cell traces while each network is being simulated.

4.1.2 Web Clients and Servers. In our WF experiments, we will
require cell traces for each of the three types of webpage sets de-
scribed in § 2.2: labeled sensitive pages𝑊𝛼 , labeled benign pages
𝑊𝛽 , and pages unlabeled by the adversary𝑊∅ . For the sensitive set
of webpages, we use the same𝑊𝛼 defined in §3.1.1. Additionally, we
form another set of webpages 𝑉 following the same random walk
procedure described in §3.1.1, this time conducting 100 independent
walks each of depth 1,000 and then removing duplicates and pages
from𝑊𝛼 . We find that |𝑉 |=67,718. We then randomly split 𝑉 into
two subsets𝑊𝛽 and𝑊∅ such that𝑊𝛽 ∪𝑊∅ = 𝑉 ,𝑊𝛽 ∩𝑊∅ = {∅},
and |𝑊𝛽 | = |𝑊∅ | = 33,859.

We extend each of the nine generated Tor network configura-
tions with an identical set of web clients and servers to facilitate
downloading pages from𝑊𝛼 ,𝑊𝛽 , and𝑊∅ . We add 40 web client
hosts that run wget2 to fetch pages in 𝑊𝛼 , 136 web client hosts
that run wget2 to fetch pages in𝑊𝛽 ∪𝑊∅ , and 69 web server hosts
that run zimply to serve our Wikipedia mirror from § 3.1.1 and
balance load across the clients. The Tor clients used by wget2 are
configured to choose a new entry relay for each circuit (guards are
disabled), and to isolate each webpage fetch to its own circuit. Every
entry is configured to record cell traces on web clients’ circuits.

4.1.3 Datasets. We use Shadow to simulate the Tor network con-
figurations and then collect the cell traces that are recorded by the
Tor relays during the simulation. In each Shadow simulation, the
web clients fetch 200 instances of each webpage in 𝑊𝛼 and one
instance of each webpage in𝑊𝛽 ∪𝑊∅ . For each of the nine network
configurations we run two independent Shadow simulations and
collate the resulting cell traces, yielding the following nine datasets:
– 200 × 2 cell traces ∀𝑤 ∈𝑊𝛼 recorded with load ℓ and seed 𝑠

– 1 × 2 cell traces ∀𝑤 ∈𝑊𝛽 recorded with load ℓ and seed 𝑠

– 1 × 2 cell traces ∀𝑤 ∈𝑊∅ recorded with load ℓ and seed 𝑠
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Figure 4: Performance in our Shadow-simulated Tor net-
works. The shaded regions show 95% CIs computed across
six trials for each load profile. Higher load causes more con-
gestion and decreases client performance.

for all load values ℓ ∈ {Base, Low,High} and seed values 𝑠 ∈
{1, 2, 3}.6 We use D(ℓ, 𝑠) to denote the collection of pages gath-
ered at load value ℓ and with network seed 𝑠 .

4.1.4 Ethics. Our experiments are run in a completely safe and
private environment in Shadow and carry no ethical risks to Tor or
any of its users or stakeholders.

4.2 Network Performance Analysis
In this section we analyze the performance of the Shadow-simulated
Tor networks configured as described in § 4.1.1 to demonstrate
the differences in the network conditions during the collection
of our datasets of cell traces. Our analysis will guide us to better
understand the effects of congestion in our WF evaluation.

We run 18 Shadow simulations in total (see § 4.1.1) using the
same machines and containers described in § 3.3.1. We analyze
performance with respect to the load profiles defined in Fig. 4.1.1,
since load is the primary contributing factor to client performance
and relay congestion. That is, we treat each simulation with the
same load profile as an independent trial run of that configuration.
Thus, we collapse the 18 simulations into three experiments (base,
low, and high load) each containing six simulation trials. We find
that each simulation in the low, base, and high load experiments
respectively consumes at most 707 GiB, 858 GiB, and 992 GiB of
RAM and completes in fewer than 24 hours, 31 hours, and 42 hours.

Network performance is shown in Fig. 4. We observe that total
relay goodput increases when configuring higher load levels as
expected: the median relay goodput is 70.6 Gbit/s, 94.1 Gbit/s, and
117 Gbit/s at low, base, and high levels of load. We also observe
that higher load levels decrease the client performance, especially
in the tails of the distributions. For example, the time to download
1 MiB files increases from 3.8s to 7.2s to 27s in the median and from
4.8s to 16s to 42s in the third quartile, for low, base, and high levels
of load, respectively. We observe that the other client performance
metrics follow similar trends.

6Seed here refers to the seed used to generate the Tor network configuration with
tornettools, not the seed used to run the Shadow simulation.

Key Takeaway. The client performance metrics indicate that
relays become more congested in networks with higher load, which
will help contextualize the results of our WF evaluations.

4.3 Website Fingerprinting Attacks
In this section we evaluate the effects that relay composition and
relay load have on WF attacks. We will do this by evaluating out-
of-distribution classification performance. In practice, it is difficult
for the adversary to train a classifier in the exact network condi-
tions that will be experienced during testing (due to natural load
variations and relay churn in the network). We quantify out-of-
distribution performance by testing the WF attacks under different
network conditions than those under which they were trained.

4.3.1 Attacks. As mentioned in §3.3.2, we consider four WF attacks
in this work: CUMUL [36], 𝑘-Fingerprinting [17], Deep Fingerprint-
ing [42], and Tik-Tok [40].

CUMUL makes classifications using a support vector machine
(SVM) with the radial basis function kernel. The SVM takes as input
a cumulatively summed directional cell sequence ⟨𝑐𝑖 ⟩ of a trace,
where 𝑐𝑖 =

∑𝑖
𝑗=0 𝑑 𝑗 and 𝑑 𝑗 ∈ {−1, 1} indicates the direction of the

𝑗th cell. The cumulative sequence is post-processed with linear
scaling to have exactly 100 elements.

𝑘-Fingerprinting (𝑘-FP) pairs a random forest classifier with a
𝑘-nearest neighbors classifier. If the classification task is multiclass,
the random forest classifier is exclusively used. The random forest
classifier takes as input a number of summary statistics of a trace,
many of which are related to the timing of packets, such as the
minimum, maximum, mean, and standard deviation of cell inter-
arrival times. For binary classification, a two-step classification
scheme is used. First, the random forest classifier is trained. The
classification leaf index of each tree in the forest is stored for each
training example, which the authors call a fingerprint. To classify
new test examples, the trained random forest is first evaluated to
obtain the example’s fingerprint. Then, the 𝑘 closest fingerprints in
the training database are computed using Hamming distance. If all
𝑘 agree that the page is sensitive, then the predicted page label is
sensitive; otherwise, the page is predicted to be benign.

Deep Fingerprinting (DF) is implemented using a deep convolu-
tional neural network which consists of a repeated stack of con-
volutional, batch normalization, activation, pooling, and dropout
layers. Cell directions from a trace ⟨𝑑𝑖 ⟩5,000

𝑖=1 , 𝑑𝑖 ∈ {−1, 1} are pro-
vided directly as input to the network. (The input is zero-padded if
the original cell sequence contains fewer than 5,000 cells.) DF has
been shown to outperform 𝑘-FP and CUMUL in prior work [42].

Tik-Tok (TT) uses the same convolutional neural network as the
DF attack, but instead of using only cell directions as input, it uses
cell directional times computed by multiplying each cell’s direction
with its time ⟨𝑡𝑖 ·𝑑𝑖 ⟩5,000

𝑖=1 , 𝑑𝑖 ∈ {−1, 1}. Hence, TT uses strictly more
information than DF (time and direction), but note that timing
information may be noisy or spuriously correlated with webpages.

These attacks cover two important dimensions of WF attack
design space as shown pictorially in Fig. 5: classical or neural, and
time-aware or time-oblivious. WF attacks using neural networks
tend to outperform classical ML attacks and do not require manual
feature engineering, but (1) are less interpretable, and (2) are more
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Figure 5: Properties of the four website fingerprinting clas-
sifiers considered in this work. We consider both classical
models and neural networks, as well as models that use time-
based features and models that do not.

expensive to train and evaluate. Time-aware attacks use cell tim-
ing information as input to the classifier, whereas time-oblivious
attacks do not. Using timing information can improve classifier
performance, but also may make the classifier more brittle and
sensitive to exogenous network conditions [40].

Hyperparameter Selection. Each of the attacks requires some
model hyperparameters (i.e., model parameters not automatically
learned during training) to be selected by the implementer. For
Tik-Tok and 𝑘-Fingerprinting, we use the same hyperparameters
as the original authors. For Deep Fingerprinting, we used the same
hyperparameters settings as the original work except the number
of training epochs. The original work used 30 training epochs, but
this value did not lead to convergence on our datasets. Instead, we
use 100 training epochs which is consistent with the Tik-Tok attack.
For CUMUL, we use nested 3-fold validation (over only training
data) to determine the 𝛾 and 𝐶 parameters of the classifier. A grid
search is used to select the best parameter pair for 2−15 ≤ 𝛾 ≤ 23

and 2−5 ≤ 𝐶 ≤ 215 for each trained classifier.

4.3.2 Experimental Methodology. Attack Scenarios. In this section,
we quantify the effectiveness of two types of WF attacks: (1) an
open-world binary classification attack, and (2) a closed-world mul-
ticlass classification attack (refer to § 2.2 for details). In the open-
world binary attack, we use TPR and FPR as measures of perfor-
mance (see § 2.3; since the class labels are imbalanced, the benign
pages outnumber the sensitive pages). In the closed-world multi-
class attack, we use accuracy as the measure of performance because
the classes are balanced. We randomly select 5 pages from𝑊𝛼 to
serve as the sensitive set of pages in the open-world binary attack.

Datasets. We randomly partition each of the 9 datasets (D(ℓ, 𝑠)
for ℓ ∈ {Base, Low,High}, 𝑠 ∈ {1, 2, 3}) into a ∼60% training set and
∼40% testing set. We use stratified random sampling to keep the
balance of page labels consistent in the training and testing sets.

Concretely, for the closed-world multiclass setting, the setup
results in 180 training examples and 120 testing examples for each
of the 98 pages in𝑊𝛼 . For the open-world binary setting, the setup
results in 180 training examples for each of the 5 pages in the
sensitive set, and 18,000 training examples of benign pages from
𝑊𝛽 . The test set consists of 120 examples for each of the 5 pages
in sensitive set, and 12,000 examples from the pages in𝑊𝛽 and𝑊∅
(50% each). For convenience of notation, let Train(ℓ, 𝑠) denote the
training set part and Test (ℓ, 𝑠) denote the testing set part ofD(ℓ, 𝑠).

Experiments. For both the open-world binary attack and the
closed-world multiclass attack, we train each of the 4 classifiers
on all 9 training sets Train(ℓ, 𝑠), ℓ ∈ {Base, Low,High}, 𝑠 ∈ {1, 2, 3}.
Then, we test all of the 4×9 classifiers on all 9 test sets Test (ℓ, 𝑠), ℓ ∈
{Base, Low,High}, 𝑠 ∈ {1, 2, 3}.

Performance Metrics. For the binary classification attack, we
record the TPR and FPR on the test set. For the multiclass attack,
we record the accuracy obtained on the test set.

4.3.3 Results. All non-aggregated results from these experiments
are included in the Appendix; see Table 7 for an overview.

Table 2a and Table 2b report the average classification results
from these experiments. The “Baseline” columns of the tables show
the case in which the training load and seed are the same as the
testing load and seed; i.e., the attack is evaluated in-distribution.
The “Variable Load” columns show averages computed over all of
the experiments where the training load is different than the testing
load, but the training seed is the same as the testing seed; in this
case, average accuracy is defined as

Avgℓ,𝑠
{
Acc

(C(ℓ, 𝑠),𝑇𝑒𝑠𝑡 (ℓ ′, 𝑠))}ℓ′≠ℓ (3)

where C(ℓ, 𝑠) is a classifier trained with load ℓ and seed 𝑠 , and
Acc(C,𝑇𝑒𝑠𝑡) is the accuracy of applying classifier C to test set𝑇𝑒𝑠𝑡 .
The “Variable Seed” columns show averages computed analogously,
but show the effects of varying the seed 𝑠 (i.e., network composition)
instead of varying the load ℓ . Note that we never simultaneously
vary both the testing seed and the testing load so that we can
separately examine these two effects.

Table 2a shows only a 1–3% difference in closed-world classi-
fication accuracy across the tested conditions, indicating that the
WF classifiers are not greatly affected by out-of-distribution testing
in this particular scenario. However, Table 2b shows that larger
differences in the TPR and FPR are observed in the open-world
binary experiments as the conditions are changed. For example,
𝑘-FP’s average TPR degrades from 97% to 78% and average FPR
increases by approximately one order of magnitude when testing
with varying network loads. In general, varying the network load
had a greater reduction on classifier performance than varying
the network composition. Additionally, time-based classifiers were
more severely affected: TT experienced a higher relative increase
in FPR than DF in out-of-distribution testing, and 𝑘-FP had a higher
FPR increase than did CUMUL.

Out-of-distribution performance was particularly poor when
training on data from a low-load network and testing on data from
a high-load network. In this case, for example, TT achieved a TPR
of only 65% and a large FPR of 5% (for seed 𝑠 = 3, see Table 14);
this false positive rate is 200% larger than measured at the baseline.
(FPR is a particularly important metric when quantifying the scale
at which a classifier may be applied, and there has been some focus
on reducing FPRs [46].) There were also particular cases when out-
of-distribution network composition (i.e., seed) had a large effect.
For example, 𝑘-FP’s recall degraded to 69% when trained on data
from the 𝑠 = 1 networks but tested on data from the 𝑠 = 3 networks.

In Table 3a and Table 3b, we present the results from our experi-
ments considering a different perspective: that the in-distribution
performance of a classifier could be used as a predictor of out-of-
distribution performance. This perspective models the scenario in
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Table 2a and Table 2b: Average classifier performance (see Eqn. 3) for the (a) closed-world multiclass and (b) open-world binary
experiments. We consider baseline conditions, varying the network load, and varying the seed (i.e., network composition).

(a) Closed-world multiclass experiments.

Accuracy

Baseline Variable Load Variable Seed

CUMUL 0.99 0.96 0.96
𝑘-FP 0.99 0.98 0.99
DF 0.99 0.98 0.98
TT 0.99 0.98 0.98

(b) Open-world binary experiments.

Baseline Variable Load Variable Seed

TPR FPR TPR FPR TPR FPR

CUMUL 0.99 1.65 × 10−3 0.89 1.55 × 10−3 0.89 1.59 × 10−3

𝑘-FP 0.97 4.44 × 10−4 0.78 2.37 × 10−3 0.86 5.00 × 10−4

DF 0.99 1.46 × 10−3 0.89 2.90 × 10−3 0.93 1.46 × 10−3

TT 0.98 1.06 × 10−3 0.89 6.57 × 10−3 0.93 1.23 × 10−3

Table 3a and Table 3b: Average and maximum error of in-distribution performance as a predictor of out-of-distribution
performance (see Eqn. 4) for the (a) closed-world multiclass and (b) open-world binary experiments.

(a) Closed-world multiclass experiments.

Accuracy

Variable Load Variable Seed

Avg %-Error Max %-Error Avg %-Error Max %-Error

CUMUL 3 7 3 5
𝑘-FP 2 4 1 2
DF 2 5 1 3
TT 2 5 1 3

(b) Open-world binary experiments.

Variable Load Variable Seed

Avg %-Error Max %-Error Avg %-Error Max %-Error

TPR FPR TPR FPR TPR FPR TPR FPR

CUMUL 13 47 42 137 13 26 37 69
𝑘-FP 35 75 106 100 14 47 41 300
DF 15 70 69 367 6 45 20 250
TT 15 82 53 250 6 78 18 700

which data is collected from a Tor network over a short time period
and then used to evaluate WF attacks without considering that the
network changes over the longer term. To illustrate, suppose we
want to compute percent error of out-of-distribution load for a per-
formance metric 𝑀 (e.g., TPR). Let 𝑀ℓ,𝑠 denote the metric computed
on a test set with load ℓ and seed 𝑠 . For two distinct measurements
𝑀ℓ,𝑠 and 𝑀ℓ′,𝑠 with ℓ ≠ ℓ ′, percent error can be computed accord-
ing to the standard definition

��𝑀ℓ,𝑠 −𝑀ℓ ′,𝑠
��/𝑀ℓ ′,𝑠 . Average error can be

computed over all seeds and load values as

Avgℓ,𝑠

{ ��𝑀ℓ,𝑠 −𝑀ℓ′,𝑠
��

𝑀ℓ′,𝑠

}
ℓ′≠ℓ

(4)

Maximum error and error due to network composition (different
network seeds) are computed similarly.

The results in Table 3a show that the error is relatively low in
the closed-world multiclass experiments. However, the results in
Table 3b suggest that in-distribution TPR and FPR are generally
poor predictors of out-of-distribution TPR and FPR when consider-
ing the open-world binary experiments. For example, the average
%-error is as high as 82% for TT when load is varied. Furthermore,
there are individual instances where the estimation error is as high
as 700%. With such high error rates, real-world classification perfor-
mance metrics may become unreliable as the Tor network naturally
evolves. Based on these results, we recommend that practitioners
and researchers should directly measure classifier performance un-
der a range of different conditions to help quantify this uncertainty.

Key Takeaway. Closed-world multiclass accuracy is not signif-
icantly affected by out-of-distribution network composition and
load. However, classifier TPR and FPR is sensitive to both of these
conditions. The sensitivity is pronounced for classifiers that rely
on time-based features, such as 𝑘-Fingerprinting and Tik-Tok.

5 ROBUSTNESS
In this section, we investigate RQ3: How can WF classifiers be made
more robust to changing network composition and performance? We
seek to answer this question by augmenting WF classifiers using
training examples from multiple unique network environments and
evaluating the extent to which the augmentation improves classi-
fication accuracy. We describe the data we use for augmentation,
our WF experiments, and our evaluation results.

5.1 Methodology
Our methodology for generating Tor network configurations, run-
ning simulations in Shadow, and collecting cell traces is identical
to the methodology from § 4.1. We do not run any new Shadow
simulations for this section; we use the same datasets of cell traces
defined in § 4.1.3 to carry out our WF evaluation.

However, instead of training the classifiers on the training sets we
previously defined, we create mixture training sets from the original
ones. The intuition here is that the mixture training sets will contain
a richer distribution and more intra-class example variance that the
classifier can use to produce more generalizable decision boundaries.
This idea is similar to dataset augmentation, which is a popular,
classifier-agnostic method to improve generalization [20, 34].

We create 3 mixed training datasets in total: Train(𝑆 = {1, 2}),
Train(𝑆 = {1, 3}), and Train(𝑆 = {2, 3}). Train(𝑆) is a uniform
mixture of the training sets {Train(ℓ, 𝑠)}ℓ∈{Base,Low,High},𝑠∈𝑆 ; i.e.,
a trace chosen at random from Train({1, 2}) is equally likely to
have been sampled from any of the training sets {Train(ℓ, 𝑠)} for
ℓ ∈ {Base, Low,High}, 𝑠 ∈ {1, 2}.

We keep the number of training examples in the mixed training
datasets equal to the original datasets (180 examples × 98 pages for
the closed-world and 180 examples × 5 pages + 18,000 examples
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for the open-world). In practice, increasing the number of training
examples can additionally improve classifier performance. How-
ever, we keep the number of training examples constant so we
can experiment with the effects of training set distribution in a
controlled manner.

We trained each of the 4 classifiers on the 3 mixed datasets.
Classifiers are tested on the datasets with seeds not present in the
training set. For example, classifiers trained on Train({1, 2}) are
tested on Test (ℓ, 3) for ℓ ∈ {Base, Low,High}. This training setup
effectively assumes that the adversary can explore a realistic range
of load values during training, but will be unlikely to determine the
exact network composition that will be encountered during testing.
We also tested each of the trained classifiers on 𝐷 (wget2, tor) (the
traces we collected directly on the live Tor network referenced
in § 3.3.2) to see if the augmented classifiers experienced boosted
real-world performance.

5.2 Results
In Table 4, we report average classifier performance, similar to the
results presented in Table 2a and Table 2b. The “New” columns
report the average performance of each classifier when applied to
all loads and for the test seed not in the training set. For example,
average accuracy is defined as

Avg𝑆 ∈S {Acc(𝐶 (𝑆),𝑇𝑒𝑠𝑡 (ℓ, 𝑠))}ℓ∈{Base,Low,High},𝑠∈{1,2,3}\𝑆 (5)
where S = {{1, 2}, {2, 3}, {1, 3}}, 𝐶 (𝑆) is the classifier trained on
seeds 𝑆 , and Acc(𝐶,𝑇𝑒𝑠𝑡) is the accuracy of the classifier 𝐶 on
test set 𝑇𝑒𝑠𝑡 . The “Old” column shows the analogous “Variable
Load” performance metrics reported in Table 2a and Table 2b; we
want to examine if the classifiers trained across various load values
outperform the load-sensitive classifiers. Finally, the “%Δ” column
displays the percent difference between the old (sensitive) and new
(robust) classification metrics.

We observe only slight improvement in closed-world classifica-
tion accuracy with robust training because accuracy was already
near-maximal prior to our augmentation. We observe larger im-
provements open-world TPR: CUMUL, Deep Fingerprinting, and
Tik-Tok’s recall improves between 6-8%, and 𝑘-Fingerprinting is
boosted by 19%. The largest improvements are experienced in FPR:
𝑘-Fingerprinting, Deep Fingerprinting, and Tik-Tok all had reduc-
tions in FPR of at least 50%. The time-aware classifiers both had
larger reductions in FPR than their time-oblivious counterparts,
suggesting that time-aware classifiers may benefit more from the
robust training process we propose.

Table 5a and Table 5b shows classifier performance when applied
to the three distinct test load levels individually without averaging
across them (but still averaged across the test seeds). Classification
accuracy, TPR, and FPR is best in the low- and base-load conditions,
where collected cell traces are likely to be less noisy. Classification
performance in the high-load condition is degraded slightly, but
performance is improved with respect to the sensitive classifiers.
For example, 𝑘-Fingerprinting achieved a TPR of at most 56% when
trained with low load and tested with high load (see Table 14),
whereas the robust classifier achieves ∼83% TPR (Table 5b). When
trained on low load and tested on high loads, Tik-Tok had a false-
positive rate as high as 5%. With the robust training procedure, FPR
was an order of magnitude lower (2×10−3).

Table 4: Overall average robust classifier performance com-
pared to the classifier performance sensitive to network load
reported in Table 2a and Table 2b. The left 1/3 of the table
shows improvements in accuracy for the closed-world multi-
class experiments, and the right 2/3 shows improvements in
TPR and FPR for the open-world binary experiments.

Accuracy TPR FPR

Old New %Δ Old New %Δ Old New %Δ

CUMUL 0.96 0.99 +3 0.89 0.96 +8 1.55×10−3 1.49×10−3 −4
𝑘-FP 0.98 0.99 +1 0.78 0.93 +19 2.37×10−3 5.83×10−4 −75
DF 0.98 0.99 +1 0.89 0.95 +7 2.90×10−3 1.49×10−3 −49
TT 0.98 0.99 +1 0.89 0.94 +6 6.57×10−3 1.13×10−3 −83

Finally, Table 6 show the performance of the classifiers when
tested against the 𝐷 (wget2, tor) dataset in the closed-world mul-
ticlass setting. Recall that data in 𝐷 (wget2, tor) was collected us-
ing wget2 directly in the live Tor network. The “Original” row
shows the accuracy the classifiers when they were trained using
𝐷 (wget2, shadow), and the “Robust” row shows the average per-
formance of the three robustly trained variants of each classifier.

For the classical models, CUMUL and 𝑘-Fingerprinting, we find
that classification accuracy was actually degraded instead of im-
proved. It is possible that in this case robust training reduced in-
distribution performance by preventing the classifiers from fitting
the data too precisely. However, large performance improvements
are achieved for both Deep Fingerprinting and Tik-Tok, the neu-
ral network models. The largest improvement is experienced by
Tik-Tok, which receives a 36% improvement in attack accuracy.

Key Takeaway. Overall, our results suggest that open-world bi-
nary classifiers can be made more robust to variable network con-
gestion levels and compositions while the simpler, closed-world
multiclass attacks may already be robust to these effects. We pro-
pose a technique to train classifiers across a range of network
congestion levels and compositions, but other techniques may also
be explored to improve robustness and validated via simulation.

6 RELATEDWORK
WF Attacks. WF has been studied for well over a decade [10, 18, 19,
31, 44]. Early WF works focused on demonstrating the feasibility
of attacks and on improving assumptions [12, 37, 47]. Following
initial attacks, classical ML techniques were designed to use simple
but robust features developed by domain experts [17, 36]. Later,
WF attacks were improved with the application of deep learning [6,
9, 35, 41, 42], leading to better accuracy and robustness against
the latest countermeasures. We use several of these attacks in our
evaluations (see Fig. 5).

More recently, techniques were developed to improve classifier
portability and to reduce the number of examples needed for train-
ing. In Triplet Fingerprinting, a triplet of neural networks is trained
using older WF datasets and then N-shot learning is applied to
reduce the number of real training examples that need to be gath-
ered [43]. GANDaLF extends this idea, using a GAN to generate the
initial data to train the neural network and then supplementing the
GAN data with additional real training examples [34]. In contrast
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Table 5a and Table 5b: Robust classifier performance when tested on circuits collected from differently loaded networks. The
reported values are average over the network seeds. Table 5a shows the results from the closed-world multiclass experiments
and Table 5b shows the results from the open-world binary experiments.

(a) Closed-world multiclass experiments.

Accuracy

Test Load: Low Test Load: Medium Test Load: High

CUMUL 1.00 1.00 0.98
𝑘-FP 0.99 1.00 0.98
DF 0.99 0.99 0.98
TT 0.99 0.99 0.98

(b) Open-world binary experiments.

Test Load: Low Test Load: Base Test Load: High

TPR FPR TPR FPR TPR FPR

CUMUL 0.99 1.56×10−3 0.99 1.50×10−3 0.91 2.89×10−3

𝑘-FP 0.98 1.67×10−4 0.99 5.56×10−4 0.83 1.03×10−3

DF 0.99 1.03×10−3 0.98 1.08×10−3 0.87 2.36×10−3

TT 0.99 5.56×10−4 0.98 6.94×10−4 0.86 2.14×10−3

Table 6: Robust classifier accuracy when applied to the
𝐷 (wget2, tor) dataset used in § 3.3.2. The original accuracy
values are taken from Table 1.

Accuracy

CUMUL 𝑘-FP DF TT

Original 0.86 0.83 0.76 0.61
Robust 0.50 0.70 0.82 0.83
%Δ -42 -16 +8 +36

to these works, we show how WF classifiers can be trained exclu-
sively in simulation, i.e., with no real-world training examples, and
still produce high accuracies when transferred to the real world.
Synthesizing both simulated and real-world data into the training
phase is an interesting direction for further study.

WF Defenses. Numerous WF defenses have been proposed, each
showing various levels of protection against the then-recent at-
tacks. Many defenses are later shown to be much less effective than
originally proposed. A more detailed comparison of WF defenses
is out of scope for this paper but recent work by Mathews et al.
provides a systematization of this knowledge [33]. Of relevance
to this paper is recent work by Witwer et al. in which Shadow
simulations were used to demonstrate that padding defenses that
claim to be “zero-delay” actually do degrade network performance
due to increased network queuing [49].

Real-WorldWF Considerations. Early WF work has been criticized
for the use of unrealistic assumptions and methodologies [28, 38],
and several later works have improved on early evaluation methods.
Wang and Goldberg demonstrated how to overcome data freshness
limitations [48], Panchenko et al. studied WF with a larger and
more realistic set of 150k internal webpage URLs, and Rimmer et al.
considered an even larger set of 400k websites [41]. More recently,
Wang has proposed that WF attacks be optimized for a precision
metric that accounts for base rates to avoid over-estimating at-
tack performance [46], and Cherubin et al. proposed an online WF
method that incorporates genuine cell traces from a Tor exit re-
lay to safely evaluate real-world WF performance [13]. Pulls and
Dahlberg demonstrate how the existence of a website oracle can
reduce uncertainty about WF predictions. Our work considers how
Tor network simulation can be used to improve WF explainability
and make WF classifiers more robust in the real world.

7 CONCLUSION
In this paper, we demonstrate that network simulation is a viable
strategy for producing datasets that lead to more explainable WF
evaluations. We show how to simulate webpage requests in Shadow
using wget2 and quantify wget2’s fidelity in producing traffic pat-
terns that are similar to tor-browser-selenium (TBS) both inside
and outside of Shadow. We find that wget2 produces highly similar
flows to TBS and that a classifier trained entirely in Shadow can
classify traffic collected on the live Tor network with greater than
85% accuracy. We investigate the sensitivity of WF classifiers to
Tor network composition and Tor relay congestion and find that
false-positive rates increase by as much as 700% when training
and testing on data collected from networks with distinct levels of
congestion. We also find that we can augment WF classifiers by
training them on data collected exclusively in network simulation
across a range of network congestion levels, and that such aug-
mentation can decrease false positive rates by as much as 83%. We
demonstrate that these robust classifiers can be transferred to the
real world and some can achieve greater than 80% accuracy.

Limitations and Future Work. We propose the use of network
simulation to increase control over WF evaluations, and we believe
this is a useful methodology for studying causal relationships be-
tween network variations and WF performance. However, there are
multiple opportunities for expanding our work and taking it in new
directions. First, our study considers the use of wget2 as a surrogate
for Tor Browser configured to the “Safest” security level; this is
done primarily to work around the lack of support for running
web browsers in Shadow. Future work could further strengthen our
methodology by developing Shadow support for Tor Browser (or
tor-browser-selenium) and running it at the default security level
(or multiple levels) instead. Second, our study considers many web-
pages but all from a single destination website: Wikipedia. While
restricting our study to Wikipedia enabled us to quickly mirror over
20 million pages, it does not accurately represent the full website
diversity that would be observed on the real Tor network, nor does
it represent the traffic complexity that the adversary would need
to manage when running WF attacks. Future work that uses our
simulation methodology should strongly consider expanding the
set of websites mirrored in Shadow to improve website diversity
and traffic complexity. Finally, we believe there is also significant
value in using genuine data from circuits that occur naturally in
Tor [13] to more precisely estimate the threat of WF. We leave it to
future work to consider how to safely collect genuine WF data.
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APPENDIX
A COMPLETE EXPERIMENTAL RESULTS
This appendix provides extended results for the experiments pre-
sented throughout this paper. Table 7 provides a hyperlinked listing
and summary of each of the tables in which we provide complete
ML experimental results.

Table 7: Hyperlinked listing of experimental results appear-
ing in this appendix section.

Section Attack Scenario Train Load Train Seed Table

§4.3.3 Multiclass Closed 1.5 Variable Table 8
§4.3.3 Multiclass Closed 2.0 Variable Table 9
§4.3.3 Multiclass Closed 2.5 Variable Table 10
§4.3.3 Multiclass Closed Variable 1 Table 11
§4.3.3 Multiclass Closed Variable 2 Table 12
§4.3.3 Multiclass Closed Variable 3 Table 13
§4.3.3 Binary Open 1.5 Variable Table 14
§4.3.3 Binary Open 2.0 Variable Table 15
§4.3.3 Binary Open 2.5 Variable Table 16
§4.3.3 Binary Open Variable 1 Table 17
§4.3.3 Binary Open Variable 2 Table 18
§4.3.3 Binary Open Variable 3 Table 19
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Figure 6: The cumulative distribution of the per-page differ-
ence in median feature values, as defined in Eqn. 2, for the
six feature functions shown in the subplots. Values closer
to 𝑥 = 0 indicate more consistency across tools. The largest
difference is due to wget2 sending more cells than TBS. The
symmetric long tails in TTLB indicates that circuit perfor-
mance is variable, independent of the tool.
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Figure 7: The mean and 99% confidence intervals (CIs) computed across multiple fetches of the 98 test pages, as described in
§3.2, for the six feature functions shown in the subplots. The black top part of each bar is the 99% CI; overlapping CIs indicate
that fetching the same page with the same tool multiple times may produce the same result as fetching the page with the other
tool. The numbers of overlapping CIs in the subplots, starting from the top, are 25/98, 0/98, 95/98, 19/98, 26/98, and 68/98.
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Table 8: Multi-class classification closed world performance
results when varying test network load with classifiers that
were trained on a 1.5-load network.

Baseline (Test Load = 1.5) Test Load = 2.0 Test Load = 2.5
Acc Acc % Err Acc % Err

𝑠
=

1

CUMUL 1.00 0.97 2.44 0.96 4.04
𝑘-FP 0.99 0.99 0.11 0.97 2.39
DF 1.00 0.99 0.31 0.97 2.76
TT 1.00 0.99 0.45 0.96 3.60

𝑠
=

2

CUMUL 1.00 0.97 3.34 0.93 6.95
𝑘-FP 1.00 0.98 2.19 0.97 3.53
DF 1.00 0.97 3.22 0.95 4.83
TT 1.00 0.97 3.04 0.95 5.11

𝑠
=

3

CUMUL 1.00 1.00 0.31 0.94 6.13
𝑘-FP 1.00 1.00 0.40 0.96 4.04
DF 1.00 1.00 0.25 0.96 4.54
TT 1.00 1.00 0.30 0.96 4.50

Table 9: Multi-class classification closed world performance
results when varying test network load with classifiers that
were trained on a 2.0-load network.

Baseline (Test Load = 2.0) Test Load = 1.5 Test Load = 2.5
Acc Acc % Err Acc % Err

𝑠
=

1

CUMUL 1.00 0.98 2.18 0.96 3.49
𝑘-FP 0.99 1.00 0.14 0.98 1.90
DF 0.99 0.99 0.02 0.97 2.03
TT 0.99 1.00 0.02 0.98 1.76

𝑠
=

2

CUMUL 1.00 0.95 5.04 0.96 3.48
𝑘-FP 1.00 0.98 1.85 0.99 1.29
DF 1.00 0.98 1.87 0.99 1.13
TT 1.00 0.98 1.85 0.98 1.35

𝑠
=

3

CUMUL 1.00 0.99 0.72 0.94 5.85
𝑘-FP 1.00 1.00 0.14 0.96 3.83
DF 1.00 1.00 0.08 0.96 4.07
TT 1.00 1.00 0.04 0.96 3.99

Table 10: Multi-class classification closed world performance
results when varying test network load with classifiers that
were trained on a 2.5-load network.

Baseline (Test Load = 2.5) Test Load = 1.5 Test Load = 2.0
Acc Acc % Err Acc % Err

𝑠
=

1

CUMUL 0.98 0.98 0.05 0.97 0.94
𝑘-FP 0.98 0.99 1.15 0.99 1.15
DF 0.98 0.99 0.92 0.99 0.76
TT 0.98 0.99 1.06 0.99 0.73

𝑠
=

2

CUMUL 0.99 0.94 5.10 0.97 2.19
𝑘-FP 0.99 0.98 1.24 1.00 0.68
DF 0.99 0.98 1.73 1.00 0.36
TT 0.99 0.98 1.71 1.00 0.45

𝑠
=

3

CUMUL 0.99 0.95 4.10 0.95 4.36
𝑘-FP 0.99 0.98 1.02 0.98 1.13
DF 0.99 0.98 1.15 0.98 1.31
TT 0.99 0.98 0.81 0.98 1.03

Table 11: Multi-class classification closed world performance
results when varying test network seed with classifiers that
were trained with network seed = 1.

Baseline (Test Seed = 1) Test Seed = 2 Test Seed = 3
Acc Acc % Err Acc % Err

Lo
ad

=
1.

5 CUMUL 1.00 0.97 2.97 0.98 2.38
𝑘-FP 0.99 0.99 0.05 1.00 0.07
DF 1.00 1.00 0.08 0.99 0.15
TT 1.00 1.00 0.0 1.00 0.09

Lo
ad

=
2.

0 CUMUL 1.00 0.95 5.32 0.97 2.61
𝑘-FP 0.99 0.99 0.02 0.99 7.9×10−3

DF 0.99 0.98 0.48 0.99 0.22
TT 0.99 0.99 0.24 0.99 0.12

Lo
ad

=
2.

5 CUMUL 0.98 0.95 3.51 0.96 1.62
𝑘-FP 0.98 0.98 0.17 0.98 0.07
DF 0.98 0.99 0.36 0.98 0.08
TT 0.98 0.98 0.24 0.98 0.11

Table 12: Multi-class classification closed world performance
results when varying test network seed with classifiers that
were trained with network seed = 2.

Baseline (Test Seed = 2) Test Seed = 1 Test Seed = 3
Acc Acc % Err Acc % Err

Lo
ad

=
1.

5 CUMUL 1.00 0.97 3.10 0.96 3.77
𝑘-FP 1.00 0.99 0.91 0.98 2.04
DF 1.00 0.98 1.87 0.98 2.00
TT 1.00 0.98 1.79 0.97 2.77

Lo
ad

=
2.

0 CUMUL 1.00 0.96 3.53 1.00 0.15
𝑘-FP 1.00 0.99 1.05 1.00 0.11
DF 1.00 0.99 1.03 1.00 0.11
TT 1.00 0.98 1.33 1.00 0.0

Lo
ad

=
2.

5 CUMUL 0.99 0.96 2.96 0.96 2.67
𝑘-FP 0.99 0.97 1.72 0.97 2.39
DF 0.99 0.98 1.86 0.97 2.72
TT 0.99 0.98 1.74 0.97 2.57

Table 13: Multi-class classification closed world performance
results when varying test network seed with classifiers that
were trained with network seed = 3.

Baseline (Test Seed = 3) Test Seed = 1 Test Seed = 2
Acc Acc % Err Acc % Err

Lo
ad

=
1.

5 CUMUL 1.00 0.96 4.20 0.95 5.43
𝑘-FP 1.00 0.99 1.04 0.98 2.08
DF 1.00 0.99 1.05 0.98 1.98
TT 1.00 0.99 1.04 0.98 2.04

Lo
ad

=
2.

0 CUMUL 1.00 0.96 3.56 0.97 2.38
𝑘-FP 1.00 0.98 1.64 1.00 0.02
DF 1.00 0.98 1.90 1.00 0.27
TT 1.00 0.97 2.39 1.00 0.12

Lo
ad

=
2.

5 CUMUL 0.99 0.96 2.85 0.96 2.86
𝑘-FP 0.99 0.97 2.05 0.97 1.76
DF 0.99 0.98 1.07 0.98 1.64
TT 0.99 0.98 0.95 0.98 1.38
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Table 14: Binary classification open world performance results when varying test network load with classifiers that were
trained on a 1.5-load network.

Baseline (Test Load = 1.5) Test Load = 2.0 Test Load = 2.5
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

𝑠
=

1

CUMUL 0.99 7.5×10−4 0.96 3.17 5.8×10−4 28.58 0.71 39.91 2.7×10−3 71.87
𝑘-Fingerprinting 0.97 2.5×10−4 0.92 5.55 2.3×10−3 89.28 0.47 106.14 6.6×10−3 96.20
Deep Fingerprinting 0.99 4.2×10−4 0.96 3.22 9.2×10−4 54.54 0.62 57.87 5.1×10−3 91.80
Tik-Tok 0.99 2.5×10−4 0.97 2.12 3.7×10−3 93.33 0.67 48.75 0.03 99.05

𝑠
=

2

CUMUL 0.99 1.4×10−3 0.98 1.53 1.4×10−3 0.0 0.89 11.19 1.4×10−3 0.0
𝑘-Fingerprinting 0.98 3.3×10−4 0.81 20.74 3.6×10−3 90.70 0.56 76.58 0.02 97.83
Deep Fingerprinting 0.99 7.5×10−4 0.82 20.49 6.7×10−4 12.50 0.79 26.11 4.3×10−3 82.35
Tik-Tok 0.99 6.7×10−4 0.83 18.16 1.3×10−3 50.00 0.76 30.40 0.01 94.87

𝑠
=

3

CUMUL 0.99 3.3×10−4 0.94 5.66 7.5×10−4 55.56 0.77 29.50 1.5×10−3 77.78
𝑘-Fingerprinting 0.98 8.3×10−5 0.95 3.17 7.5×10−4 88.89 0.50 94.04 2.0×10−3 95.83
Deep Fingerprinting 0.99 1.7×10−4 0.92 7.64 1.3×10−3 86.67 0.58 69.14 0.01 98.78
Tik-Tok 0.99 2.5×10−4 0.98 1.36 3.5×10−3 92.86 0.65 53.47 0.05 99.46

Table 15: Binary classification open world performance results when varying test network load with classifiers that were
trained on a 2.0-load network.

Baseline (Test Load = 2.0) Test Load = 1.5 Test Load = 2.5
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

𝑠
=

1

CUMUL 0.99 1.4×10−3 0.96 3.28 1.2×10−3 21.42 0.76 31.25 2.9×10−3 51.43
𝑘-Fingerprinting 0.96 3.3×10−4 0.93 4.07 0.0 inf 0.49 96.87 1.2×10−3 71.43
Deep Fingerprinting 0.99 1.7×10−3 1.00 0.35 1.8×10−3 8.3×10−3 0.82 21.74 5.9×10−3 70.42
Tik-Tok 0.98 1.7×10−4 0.97 0.30 1.7×10−4 8.3×10−3 0.66 49.22 2.2×10−3 92.31

𝑠
=

2

CUMUL 0.99 9.2×10−4 0.96 3.12 1.2×10−3 21.43 0.92 8.18 1.3×10−3 31.25
𝑘-Fingerprinting 0.99 1.7×10−4 0.95 4.23 2.5×10−4 33.33 0.75 31.56 9.2×10−4 81.82
Deep Fingerprinting 0.98 1.8×10−3 0.98 0.17 1.6×10−3 10.53 0.92 6.88 3.1×10−3 43.24
Tik-Tok 0.98 3.3×10−4 0.97 1.03 1.7×10−4 100.00 0.90 9.44 1.6×10−3 78.95

𝑠
=

3

CUMUL 0.98 9.2×10−4 0.69 41.83 5.0×10−4 83.33 0.88 12.17 9.2×10−4 0.0
𝑘-Fingerprinting 0.96 3.3×10−4 0.77 25.32 0.0 inf 0.57 68.80 1.4×10−3 76.47
Deep Fingerprinting 0.99 1.2×10−3 0.88 11.89 2.5×10−4 366.67 0.78 27.53 4.0×10−3 70.83
Tik-Tok 0.99 7.5×10−4 0.92 7.62 0.0 inf 0.77 28.63 4.1×10−3 81.63

Table 16: Binary classification open world performance results when varying test network load with classifiers that were
trained on a 2.5-load network.

Baseline (Test Load = 2.5) Test Load = 1.5 Test Load = 2.0
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

𝑠
=

1

CUMUL 0.98 2.4×10−3 0.94 3.87 1.3×10−3 81.23 0.93 5.12 2.4×10−3 0.0
𝑘-Fingerprinting 0.96 5.0×10−4 0.88 9.19 2.5×10−4 99.98 0.83 16.37 8.3×10−4 40.00
Deep Fingerprinting 0.98 3.2×10−3 1.00 1.69 1.8×10−3 77.26 0.99 0.85 2.2×10−3 44.44
Tik-Tok 0.98 1.7×10−3 1.00 2.20 5.0×10−4 249.97 0.99 1.19 1.2×10−3 40.00

𝑠
=

2

CUMUL 0.96 2.9×10−3 0.98 1.19 2.6×10−3 12.90 0.99 2.69 1.8×10−3 59.09
𝑘-Fingerprinting 0.96 1.1×10−3 0.96 0.0 6.7×10−4 62.50 0.99 2.70 5.8×10−4 85.71
Deep Fingerprinting 0.99 1.3×10−3 1.00 1.00 1.4×10−3 11.76 1.00 1.00 1.3×10−3 0.0
Tik-Tok 0.98 2.8×10−3 1.00 1.17 1.8×10−3 54.55 1.00 1.50 1.3×10−3 126.67

𝑠
=

3

CUMUL 0.98 3.7×10−3 0.82 18.79 1.6×10−3 136.84 0.95 3.52 1.8×10−3 114.29
𝑘-Fingerprinting 0.97 9.2×10−4 0.84 14.99 6.7×10−4 37.50 0.94 3.74 5.8×10−4 57.14
Deep Fingerprinting 0.98 2.7×10−3 1.00 2.00 1.6×10−3 68.42 1.00 1.84 1.5×10−3 77.78
Tik-Tok 0.98 2.5×10−3 0.99 1.18 2.4×10−3 3.45 0.99 1.51 1.8×10−3 36.36
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Table 17: Binary classification open world performance results when varying test network seed with classifiers that were
trained with network seed = 1.

Baseline (Test Seed = 1) Test Seed = 2 Test Seed = 3
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

Lo
ad

=
1.

5 CUMUL 0.99 7.5×10−4 0.78 27.56 6.7×10−4 12.50 0.97 2.05 1.1×10−3 30.77
𝑘-Fingerprinting 0.97 2.5×10−4 0.84 15.84 4.2×10−4 40.00 0.93 4.65 2.5×10−4 0.0
Deep Fingerprinting 0.99 4.2×10−4 0.88 12.12 4.2×10−4 0.0 0.98 1.02 1.7×10−4 150.00
Tik-Tok 0.99 2.5×10−4 0.88 12.29 1.7×10−4 50.00 0.98 1.19 0.0 inf

Lo
ad

=
2.

0 CUMUL 0.99 1.4×10−3 0.98 1.52 1.3×10−3 13.32 0.82 21.62 1.3×10−3 13.32
𝑘-Fingerprinting 0.96 3.3×10−4 0.98 1.59 4.2×10−4 20.01 0.81 19.80 2.5×10−4 33.32
Deep Fingerprinting 0.99 1.7×10−3 0.99 0.01 2.4×10−3 27.59 0.85 16.39 1.3×10−3 39.99
Tik-Tok 0.98 1.7×10−4 0.97 0.48 5.8×10−4 71.43 0.83 18.06 8.3×10−5 99.98

Lo
ad

=
2.

5 CUMUL 0.98 2.4×10−3 0.72 36.24 1.8×10−3 38.08 0.88 11.37 1.8×10−3 38.08
𝑘-Fingerprinting 0.96 5.0×10−4 0.74 30.05 9.2×10−4 45.46 0.79 22.87 6.7×10−4 25.01
Deep Fingerprinting 0.98 3.2×10−3 0.93 6.09 2.8×10−3 14.70 0.95 3.30 2.4×10−3 34.47
Tik-Tok 0.98 1.7×10−3 0.92 6.51 1.7×10−3 4.99 0.94 4.24 1.6×10−3 10.52

Table 18: Binary classification open world performance results when varying test network seed with classifiers that were
trained with network seed = 2.

Baseline (Test Seed = 2) Test Seed = 1 Test Seed = 3
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

Lo
ad

=
1.

5 CUMUL 0.99 1.4×10−3 0.98 1.36 1.0×10−3 41.67 0.96 3.83 9.2×10−4 54.55
𝑘-Fingerprinting 0.98 3.3×10−4 0.88 10.94 4.2×10−4 20.00 0.82 20.00 5.8×10−4 42.86
Deep Fingerprinting 0.99 7.5×10−4 0.98 0.68 7.5×10−4 0.0 0.91 8.59 5.0×10−4 50.00
Tik-Tok 0.99 6.7×10−4 0.98 0.85 8.3×10−5 700.00 0.92 7.05 3.3×10−4 100.00

Lo
ad

=
2.

0 CUMUL 0.99 9.2×10−4 0.99 0.53 9.2×10−4 8.3×10−3 0.97 2.23 8.3×10−4 10.00
𝑘-Fingerprinting 0.99 1.7×10−4 0.93 5.65 4.2×10−4 60.00 0.96 2.25 4.2×10−4 60.00
Deep Fingerprinting 0.98 1.8×10−3 0.98 0.72 1.2×10−3 40.01 0.98 0.17 1.8×10−3 4.55
Tik-Tok 0.98 3.3×10−4 0.96 2.14 4.2×10−4 19.99 0.96 2.07 7.5×10−4 55.56

Lo
ad

=
2.

5 CUMUL 0.96 2.9×10−3 0.84 15.41 3.5×10−3 16.66 0.84 15.34 3.4×10−3 14.63
𝑘-Fingerprinting 0.96 1.1×10−3 0.77 25.40 7.5×10−4 44.46 0.93 3.41 9.2×10−4 18.18
Deep Fingerprinting 0.99 1.3×10−3 0.89 11.23 1.7×10−3 28.57 0.96 2.60 2.1×10−3 40.00
Tik-Tok 0.98 2.8×10−3 0.86 15.01 3.0×10−3 5.55 0.96 2.07 2.8×10−3 0.0

Table 19: Binary classification open world performance results when varying test network seed with classifiers that were
trained with network seed = 3.

Baseline (Test Seed = 3) Test Seed = 1 Test Seed = 2
TPR FPR TPR % Err FPR % Err TPR % Err FPR % Err

Lo
ad

=
1.

5 CUMUL 0.99 3.3×10−4 0.97 2.05 7.5×10−4 55.56 0.93 6.80 1.1×10−3 69.23
𝑘-Fingerprinting 0.98 8.3×10−5 0.94 3.72 1.7×10−4 50.00 0.92 6.74 8.3×10−5 0.0
Deep Fingerprinting 0.99 1.7×10−4 0.97 1.72 5.8×10−4 71.43 0.94 4.96 0.0 inf
Tik-Tok 0.99 2.5×10−4 0.99 0.17 4.2×10−4 40.00 0.98 1.36 0.0 inf

Lo
ad

=
2.

0 CUMUL 0.98 9.2×10−4 0.98 0.20 9.2×10−4 8.3×10−3 0.72 36.89 6.7×10−4 37.50
𝑘-Fingerprinting 0.96 3.3×10−4 0.91 5.83 8.3×10−5 300.03 0.78 23.19 5.8×10−4 42.86
Deep Fingerprinting 0.99 1.2×10−3 0.97 1.59 1.1×10−3 7.70 0.84 17.19 3.3×10−4 250.00
Tik-Tok 0.99 7.5×10−4 0.99 0.02 7.5×10−4 8.3×10−3 0.86 14.26 5.0×10−4 50.00

Lo
ad

=
2.

5 CUMUL 0.98 3.7×10−3 0.71 37.15 3.6×10−3 4.66 0.92 6.72 3.2×10−3 15.38
𝑘-Fingerprinting 0.97 9.2×10−4 0.69 40.99 6.7×10−4 37.51 0.94 3.92 1.0×10−3 8.33
Deep Fingerprinting 0.98 2.7×10−3 0.82 19.91 2.6×10−3 3.23 0.98 0.0 2.6×10−3 3.23
Tik-Tok 0.98 2.5×10−3 0.84 15.83 3.2×10−3 21.05 0.98 0.17 3.4×10−3 26.83
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